

¹³C NMR CHEMICAL SHIFT ASSIGNMENTS OF ALKYL CHAINS OF HISTAMINE ANALOGOUS ω -AMINOALKYLHETEROCYCLES AND BICYCLIC DERIVATIVES

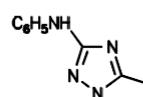
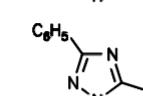
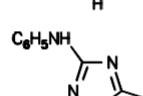
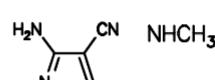
Martin POHL, Wolf-Dieter BLOEDORN, Clemens MUGGE
and Jurgen LIEBSCHER*

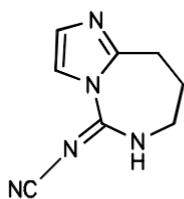
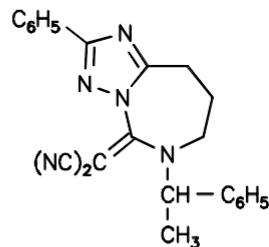
Fachbereich Chemie,
Humboldt-Universität Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany

Received August 9, 1993

Accepted October 12, 1993

ω -Aminoalkylheterocycles and aromatics as well as bicyclic azolodiazepine derivatives were investigated by means of CH-COSY and INADEQUATE experiments. The ¹³C NMR shifts of all carbon atoms of the aminopropyl and aminobutyl moieties could be assigned. The benzylic position of the ω -aminopropyl moieties appears most upfield rather than more downfield like erroneously reported in the literature.





ω -Aminoalkylheterocycles with alkyl chains longer than two carbon atoms such as compounds *I* are homologues and analogues of the naturally occurring histamine. They can be prepared by traditional ring closure reactions¹. Recently a variety of new compounds *I* could be synthesized by ring chain transformation reactions²⁻¹⁰. By derivatization of the ω -amino group of homohistamine *I* (Het)aryl = 4-imidazolyl, X = NH₂) to quanidine moieties highly active H₂-receptor antagonists, such as Impromidine¹¹, were obtained¹²⁻¹⁵. This transformation can be conducted via bicyclic derivatives *II* (refs¹²⁻¹⁵), e.g. *IIa*. ¹³C NMR data of ω -aminoalkylheterocycles *I* were repeatedly reported²⁻⁹, but without a full assignment of the signals of the alkyl side chain (for a ¹³C signal assignment in a branched aminopropylisoxazole see ref.¹⁶. By one exception *IIa* (ref.¹²), the same holds true for bicyclic derivatives *II* (ref.¹⁷). In the former report¹² the central CH₂ group (position 2) of *IIa* was assigned to the most upfield ¹³C signal.



We report now on detailed 2D-NMR experiments which reveal that the previous assignments¹² were erroneous and allow to assign the ¹³C NMR shifts of all carbon atoms of ω -aminoalkylheterocycles *I* and bicyclic derivatives *II*. A number of ω -functionalized alkylbenzenes and heterocycles *I* as well of bicyclic derivatives *II* were in-

* The author to whom correspondence should be addressed.

vestigated by ^1H NMR and by the CH-COSY method (Table I). The assignment of the proton signals was possible based on the signal splitting and chemical shifts. The CH_2 group at position 2 appears most upfield as a multiplet. The two other methylene groups are pseudo triplets with the CH_2 group next to the electronegative heteroatom (position 3) found most downfield. As far as the substituent on nitrogen in vicinity of position 3 in bicyclic derivatives *IIc* is chiral ($-\text{CH}(\text{CH}_3)\text{C}_6\text{H}_5$) the spectra are more complex because of the diastereotopic CH_2 protons. In the aminobutyl compound *Ih* the CH_2 group at position 3 shows a multiplet because of the neighbourhood of an additional methylene group.

I

	(Het)aryl	X		(Het)aryl	X
<i>a</i>	C_6H_5	NH_2	<i>f</i>		NHCH_3
<i>b</i>	C_6H_5	OH	<i>g</i>		$\text{NH}-\text{CH}-\text{C}_6\text{H}_5$ CH_3
<i>c</i>	C_6H_5	Cl	<i>h</i>		CH_2NHCH_3
<i>d</i>	C_6H_5	H			
<i>e</i>		NHCH_3			

*IIa**IIb**IIc*

Based on the proton chemical shifts, CH-COSY experiments were used to assign the ^{13}C signals. An unambiguous correlation between the highest field shifted inner CH_2 protons (position 2) and the medium shifted ^{13}C signal was found. This proves the location of the carbon signal of position 2 of compounds *I* (*Ih* excepted) and *II* at

TABLE I
Proton and ^{13}C NMR chemical shifts (in ppm, δ -scale) compounds *Ia* – *Ih* and *IIa* – *IIc*. Solvent CD_3SOCD_3

Compound	^1H NMR			^{13}C NMR		
	CH ₂ -1	CH ₂ -2	CH ₂ -3	CH ₂ -1	CH ₂ -2	CH ₂ -3
<i>Ia</i>	2.53 ^a	1.63 ^a	2.57 ^a	32.6	34.8	41.1
<i>Ib</i>	2.65	1.78	3.49	31.8	34.5	60.3
<i>Ic</i>	2.71	2.01	3.59	32.2	33.7	44.5
<i>Id</i> (ref. ¹⁸)	2.52	1.57	0.87	37.3	24.1	13.5
<i>Ie</i>	2.52	1.71	2.47	24.3	27.8	50.7
<i>If</i>	2.65	1.78	2.49	24.0	27.5	50.9
<i> Ig</i>	2.87 ^a	1.90 ^a	2.57 ^a	25.5	27.2	46.8
<i>Ih</i> ^b	2.63	1.70	1.45	26.0	25.3	28.7
<i>IIa</i>	2.92	2.01	3.20	23.9	28.3	42.1
<i>IIb</i>	3.05	2.30	3.40	22.1	27.2	51.2
<i>IIc</i>	3.06	1.48/1.92	3.17	22.3	27.3	41.9

^a Measured in CDCl_3 . ^b Other signals of $\text{CH}_2\text{--N}$: ^1H 2.46 and ^{13}C 51.2.

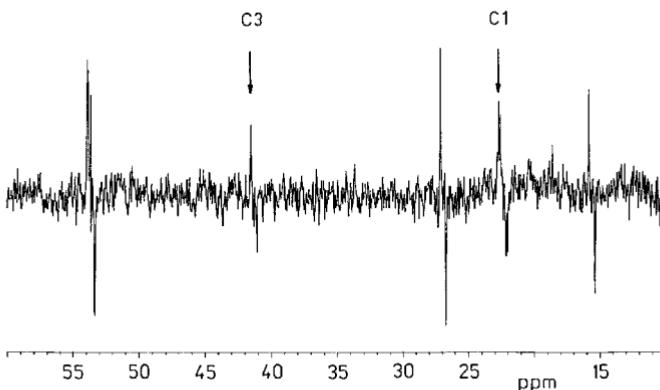


FIG. 1
INADEQUATE spectrum of *IIc*

medium shift of the three propylene ^{13}C signals rather than at the most upfield position, like erroneously reported before¹². An unambiguous assignment of the most upfield signal was possible by an 1D-INADEQUATE NMR spectrum of the bicyclic compound *IIC* (see Fig. 1), which shows the connectivity of CH_2 at position 1 with the ring carbon atom of the triazole ring (two $^1\text{J}(\text{C}, \text{C})$ splittings). Consequently the most downfield signal belongs to the CH_2 group in position 3 (or 4 in *Ih*) next to the heteroatom. The location of the benzylic CH_2 signal (position 1) in compounds *I* and *II* is caused by both, a typical γ -effect of the heteroatom X and the influence of the heterocycle. In all compounds *I* and *II* the same sequence $1 < 2 < 3$ of ^{13}C NMR chemical shifts is found (*Id* X = H excepted), but the shift differences between position 1 and 2 sometimes becomes relatively small (e.g. *Ic*). An analogous sequence of the ^{13}C NMR shifts is found in the aminobutyl compound *Ih* but the additional CH_2 group at position 2 gives rise to the sequence $(2 < 1 < 3 < 4)$.

Most presumable the assignment of ^{13}C NMR shifts of ω -functionalized propyl and butyl substituents can also be applied to other compounds *I* and *II* reported in the literature^{2–10, 12–15}.

EXPERIMENTAL

Compounds *Ia* – *Ic* were purchased from Aldrich. The following compounds were prepared according to literature procedures: *Ie* (ref.⁵), *If* – *Ih* (ref.²), *IIb* and *IIc* (ref.¹⁷). Compound *IIa* was supplied by Dr A. Buschauer, Freie Universität Berlin. All spectra were recorded at ambient temperature on a Bruker AM 300 spectrometer operating at 300.13 and 75.46 MHz for ^1H and ^{13}C , respectively. As solvent CD_3SOCD_3 was used with sample concentrations of 0.1 mol l⁻¹. The ^{13}C – ^1H heteronuclear correlation experiment was carried out with proton decoupling in F_1 CHCORRD (ref.¹⁹) and standard parameters. The INADEQUATE experiments²⁰ were performed with an one bond coupling optimization ($^1\text{J}(\text{C}, \text{C}) = 50$ Hz) without refocussing. The following parameters were used: evolution time for $\text{J}(\text{C}, \text{C})$: 0.01 ($2 \times \text{D}2$) s, repetition time: 10 s, digital resolution: 0.1 Hz/pt.

We thank Prof. Dr A. Buschauer for supplying a sample of the bicyclic homohistamine derivative *IIa* and the Fonds der Chemischen Industrie for financial support.

REFERENCES

1. Elz S., Schunack W.: *Z. Naturforsch.*, B 42, 238 (1987).
2. Liebscher J., Patzel M., Kelboro Y. F.: *Synthesis* 1989, 672.
3. Liebscher J., Patzel M., Bechstein U.: *Synthesis* 1989, 967.
4. Patzel M., Liebscher J., Andreae S., Schmitz E.: *Synthesis* 1990, 1071.
5. Patzel M., Liebscher J.: *J. Heterocycl. Chem.* 28, 1257 (1991).
6. Patzel M., Liebscher J.: *Arch. Pharm.* 324, 963 (1991).
7. Radics U., Liebscher J., Ziemer B., Rybakov Y.: *Chem. Ber.* 125, 1389 (1992).
8. Radics U., Liebscher J., Pätz M.: *Synthesis* 1992, 673.
9. Patzel M., Liebscher J.: *J. Org. Chem.* 57, 1831 (1992).
10. Bohrisch J., Patzel M., Mugge C., Liebscher J.: *Synthesis* 1991, 1153.

11. Buschauer A.: *J. Med. Chem.* **32**, 1963 (1989).
12. Buschauer A., Schunack W.: *J. Heterocycl. Chem.* **21**, 753 (1984).
13. Buschauer A., Kramer I., Schunack W.: *Arch. Pharm.* **319**, 434 (1986).
14. Elz S., Schunack W.: *Arch. Pharm.* **320**, 185 (1987).
15. Buschauer A.: *Arch. Pharm.* **321**, 415 (1988).
16. Dannhardt G., Grobe A., Gussmann S., Obergrusberger R., Ziereis K.: *Arch. Pharm.* **321**, 163 (1988).
17. Pohl M., Bechstein U., Patzel M., Liebscher J., Jones P. G.: *J. Prakt. Chem.* **334**, 630 (1992).
18. Pretsch E., Seibl J., Simon W., Clerc T.: *Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopische Methoden*, p. C40. Springer, Berlin 1986.
19. Wilde J. A., Bolton P. H.: *J. Magn. Reson.* **59**, 343 (1984).
20. Bax A., Freeman R., Kempsell S. P.: *J. Am. Chem. Soc.* **102**, 4849 (1980).